Some factoring formulas:

|  | Sum of Cubes |
| :--- | :--- |
| Difference of Cubes | $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ |
|  | $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$ |
| Difference of Squares | $a^{2}-b^{2}=(a+b)(a-b)$ |

Some work times formulas:

Two laborers:
$\frac{1}{x}=\frac{1}{a}+\frac{1}{b}$

Three laborers:
$\frac{1}{x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

When something moves a distance $d$ at rate $r$ for time $t$, then $d=r t$
When simplifying a radical: If your variable could be negativeland the index of the radical is even the result must be placed in absolute value bars

If $n$ is a positive integer greater than 1 and $\sqrt[n]{a}$ is a real number, then $a^{1 / n}=\sqrt[n]{a}$
If $m$ and $n$ are positive integers greater than 1 with $\frac{m}{n}$ in simplest form, then $a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
As long as $a^{m / n}$ is a nonzero real number, $a^{-m / n}=\frac{1}{a^{m / n}}$
The Product Rule for Radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$
The Quotient Rule for Radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and $\sqrt[n]{b}$ is not zero, then $\sqrt[n]{\sqrt[n]{a}}=\sqrt[n]{\frac{a}{b}}$
The distance between two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
The midpoint of the line segment whose endpoints are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the point with coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

The Pythagorean Theorem: If $a$ and $b$ are the legs of a right triangle, and $c$ is its hypotenuse, then $a^{2}+b^{2}=c^{2}$

The imaginary unit, written $i$, is the number whose square is -1 . That is, $i^{2}=-1$ and $i=\sqrt{-1}$
If $a$ is a positive number, then $\sqrt{-a}=i \cdot \sqrt{a}$
The Square Root Property: If $X$ is any algebraic expression, $c$ is a real number, and $X^{2}=c$, then $X= \pm \sqrt{c}$

The Quadratic Formula: If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ and its discriminant $b^{2}-4 a c$ tells the quantity and type of solution(s).

Given the parabola $y=f(x)=a x^{2}+b x+c$, its vertex is the point $\left(\frac{-b}{2 a}, c-\frac{b^{2}}{4 a}\right)$

